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Colorectal carcinogenesis involves overexpression of many immediate–early 

response genes associated with growth and inflammation, significantly 

altering downstream protein synthesis and small–molecule metabolite 

production. We have performed a comprehensive metabolic analysis to test 
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the hypothesis that the distinct metabolite profiles of malignant tumors are 

reflected in body fluids and can be quantified by a metabolic profiling 

approach. In this study, we have analyzed the serum and urine metabolites 

from 64 colorectal cancer (CRC) patients and 65 healthy volunteers using gas 

chromatography coupled with mass spectrometry. After automated mass 

spectral deconvolution, 225 metabolites were consistently detected in serum 

samples. Of these, 26 were selected as significantly different between CRC 

and healthy controls, using variable importance (VIP) values and the 

Wilcoxon-Mann-Whitney test. From human urine samples, 187 metabolites 

were detected, of which 31 were selected as differentially produced 

metabolites. Using the 3 serum metabolites that differed most between the 

groups—oleamide, pyruvate, and histidine—the orthogonal projection to 

latent structures-discriminant analysis (OPLS-DA) model predicted the 

classification of the biological samples with 97.78% sensitivity and 97.83% 

specificity, based on a 99% confidence interval for probability of class 

membership. The orthogonal signal corrected (OSC)/PLS-DA model 

successfully distinguished between two CRC phenotypes, fecal occult blood 

test (FOBT)–positive and FOBT–negative, and two CRC locations, colon 

cancer and rectal cancer. We conclude that the metabolic profiling approach is 

sufficiently robust and sensitive to develop further for early detection of CRC, 

and for CRC patient stratification into subgroups of pathological stages or 

clinical phenotypes.  

 

Colorectal cancer; metabonomics; gas chromatography/mass spectrometry; 

oleamide; glycolysis 

 

Colorectal cancer (CRC) is the third most common type of cancer and the 

fourth most frequent cause of cancer mortality in the world (1). The American 

Cancer Society estimates that a total of 1,437,180 new cancer cases and 565,650 
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deaths from cancer, including 148, 810 new CRC cases and 49,960 deaths from 

CRC, will occur in the United States in 2008 (2). Recent decades have also 

witnessed a rapid increase in CRC morbidity in fast developing countries like 

China, especially in major cities where significant lifestyle alterations have 

occurred (3). Early and accurate diagnosis of CRC is of central importance for 

five-year survival and for less complicated surgery (2). Although CRC is a 

highly treatable and often curable disease when localized to the bowel, the 

prognosis for late stage CRC (eg, recurrent metastatic disease) remains poor 

and is most often the ultimate cause of death(2). 

A fundamental reason for the relative lack of progress worldwide in 

treating CRC is that the biology of this malignant disease is not sufficiently 

understood, not only in its early stages of development but also in the 

differences between CRC phenotypes and their therapeutic outcomes. 

Experimental studies have focused largely on understanding the 

transcriptional regulation of cancer-associated gene expression (4, 5), whereas 

less research has been devoted to determining how this perturbed 

post-transcriptional regulation leads to abnormal expression of downstream 

proteins and metabolites in this complex disease. Therefore, more effort is 

needed to improve our understanding of CRC biology to identify new 

molecular targets and to improve current cancer treatment and prevention 

strategies. 

Overexpression of many immediate–early response genes associated with 

growth and inflammation (eg, proto-oncogenes, inflammatory mediators, and 

angiogenic growth factors) is commonly observed in CRC cells. These genetic 

modifications associated with colorectal carcinogenesis allow the transformed 

cell to escape apoptosis while promoting proliferation, angiogenesis, and 

metastasis (6). These changes lead to significant alterations in downstream 

biochemical substances such as proteins and small–molecule metabolites. 

Small–molecule metabolites are the products of systemic biochemical 
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regulations, and their expression levels can be regarded as the response of 

biological systems to genetic and environmental changes (7).  

Currently, a lack of detailed information about the disease–associated 

metabonome limits the ability of cancer biologists to understand the roles of 

metabolic pathways associated with CRC and its treatment. To address this 

gap in knowledge, emerging metabonomics / metabolomics technology uses 

multivariate statistical techniques to analyze the highly complex data sets 

generated by high-throughput spectroscopy such as nuclear magnetic 

resonance (NMR) and mass spectrometry (MS) (8, 9). Identifying metabolites 

that account for the difference between the metabolic profiles of people with 

CRC and their healthy counterparts can reveal important underlying 

molecular mechanisms of the disease. To date, global metabolic profiling of 

clinical samples (eg, urine, sera, and tumor tissues) has been used to visualize 

the distinctive metabolic profiles of patients with coronary heart disease (10), 

inflammatory bowel disease (11), type 2 diabetes (12), ovarian cancer and 

ovarian borderline tumors  (13).  

In this study, we conducted a comprehensive analysis of the urinary and 

serum metabolites from 129 participants (65 healthy individuals and 64 CRC 

patients diagnosed as stage I, II, III, or IV, TNM Classification) using gas 

chromatography-mass spectrometry (GC-MS) in conjunction with 

multivariate statistical techniques. The purpose of the comprehensive 

metabolic analysis was to determine whether variations in the CRC 

metabonome are reflected in body fluids, such as urine and serum, therefore, 

making alternative, noninvasive means for cancer detection possible. The 

study was also intended to gain knowledge of important metabolic variations 

associated with CRC morbidity, which can be utilized for improved CRC 

detection, diagnosis, and therapeutic strategies. 
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Results  

Serum metabolite profiles of CRC patients 

Typical gas chromatography time-of-flight mass spectrometry (GC-TOF MS) 

total iron current (TIC) chromatograms of serum samples from a cancer 

patient and a healthy control are shown in Figure 1 A. Analysis with 

ChromaTOF software detected a total of 225 metabolites in more than 80% 

samples; most metabolites were organic acids, amines, amino acids, 

saccharine, and nucleic acids. Both principal component analysis (PCA) and 

orthogonal partial least squares projection to latent structures-discriminant 

analysis (OPLS-DA) were performed to analyze the differences between 

samples from CRC patients and those from healthy individuals. The 

OPLS-DA model demonstrated satisfactory modeling and predictive abilities 

using one predictive component and two orthogonal components 

(R2Ycum=0.793, Q2Ycum=0.618), achieving a distinct separation between the 

metabolite profiles of the two groups (Fig. 2A). Notably, the OPLS-DA model 

correctly discriminated all nine CRC patients diagnosed at stage I from the 

healthy controls. However, the model failed to distinguish CRC patients by 

different pathological stages (I to IV). 

Twenty-eight significantly different metabolites were selected using VIP 

values, and of these metabolites, 26 were also determined to be significantly 

different by the Wilcoxon-Mann-Whitney test, with the critical p-value set at 

0.05. Twenty-one of the 28 metabolites were identified using GC-MS spectral 

databases and thirteen were confirmed using reference standards (Table 1). 

Among the identified metabolites, oleamide was the serum metabolite found 

to be most depleted in the CRC patients, compared to controls, showing the 

greatest fold change (FC=-3). Pyruvate was the metabolite most increased 

(FC=2.1) in CRC patients. The most significantly altered serum metabolites 

included decreased serine, lysine, tryptophan, histidine, and valine, and 

elevated lactate, 2-hydroxybutrate, and 3-hydroxybutrate in the CRC patients.  

Formatted: Keep with next
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Using the 5 most significantly different metabolites—oleamide, pyruvate, 

histidine, valine and serine—we classified patients with CRC and healthy 

individuals using SPSS software, and obtained high diagnostic accuracy with 

100% sensitivity and 98.5% specificity (as shown in SI 1A). Furthermore, 

using the 3 most significantly different metabolites—oleamide, pyruvate and 

histidine—distinct separation between CRC patients and healthy controls was 

achieved (Fig. 3A).  

Urinary metabolite profiles of CRC patients 

Typical GC-MS TIC chromatograms of urine samples derived from a cancer 

patient and a healthy control are shown in Figure 1B. Using an automated 

peak deconvolution and library search procedure for GC-MS data (14, 15), 187 

metabolites were consistently detected in at least 80% of the urine samples. As 

in the serum samples, most of the metabolites detected were organic acids, 

amines, and amino acids. PCA and OPLS-DA were used to discriminate urine 

samples from CRC patients from the healthy controls. The cross-validated 

OPLS-DA model had satisfactory predictive ability using one predictive 

component and three orthogonal components (R2Ycum=0.767, Q2Ycum=0.594) 

(Fig. 2B). All cancer patients were differentiated from the healthy controls in 

the first predictive component (PC1). Notably, 9 CRC patients at stage I were 

correctly classified as diseased individuals, suggesting that this method may 

hold a clinical potential for early diagnosis of CRC. However, like the serum 

metabolic profile, this method also failed to differentiate CRC patients among 

several pathological stages (stage I to IV).  

Based on the VIP threshold from the OPLS-DA model, a total of 36 

significant variables, expressed as retention time-mass to charge ratio 

(RT-M/Z) pairs, were obtained, but five of them were not verified as 

significant by univariate statistics. Through searching our compound library, 

16 metabolites were identified, of which 10 metabolites were verified using 
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reference compounds available at our laboratory (Table 2). The urinary 

metabolites with the most significant differences between groups included 

5-hydroxyindoleacetate (5-HIAA), 5-hydroxytryptophan (5-HTP), 

methyl-O-hydroxyhippurate, phenylacetylglutamine, at elevated levels, and 

isocitrate, succinate and citrate, at decreased levels. 

SPSS software analysis was used to classify participants by discriminant 

analysis using 5 of the 21 identified differentially produced metabolites in 

urine of CRC patients (ie, 5-HTP, succinate, glutamate, 

methyl-o-hydroxyhippurate, and phenylactate), achieving good 

discrimination with 76.6% sensitivity and 84.6% specificity (see SI 1B). The 3D 

scatter plot was generated with three metabolites, 5-HTP, succinate, and 

glutamate as the three axes, leading to good separation (Fig. 3B).  

Prediction model and quantification of key differentially produced 

metabolites 

SPSS software was used to identify potential “biomarkers” or characteristic 

metabolic patterns for clinical use. Approximately 70% of the samples (the 

‘training set’) were randomly selected to build an OPLS-DA model using the 

3 most significantly different metabolites, oleamide, pyruvate and histidine, 

used to predict the presence of CRC in the remaining 30% of samples (the 

‘test set’). The OPLS-DA model predicted the presence of CRC with 97.78% 

sensitivity and 97.83% specificity based on a 99% confidence interval for 

probability of class membership (Fig. 4A). The T-predicted scatter plot 

demonstrated a strong predictive ability distributing samples to class 1 (CRC 

patients) and class 2 (controls). The metabolites were quantified using 

internal reference standards, 2-chlorophenylalanine for pyruvate and 

histidine, and heptadecanoic acid for oleamide. Figure 4B-4D shows the 

difference in metabolite concentrations between the two groups. More details 

about the analysis are provided in SI 2.   
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With an orthogonal signal corrected (OSC) /PLS-DA discrimination 

technique, the serum and urinary metabolic profiles were also able to 

distinguish between two disease phenotypes (fecal occult blood test 

(FOBT)-positive and FOBT-negative) and two cancer locations (colon cancer 

and rectal cancer) among all CRC patients (Fig. 5). 

Discussion 

In this study, we detected significantly altered metabolic profiles of patients 

with CRC compared to their healthy counterparts, highlighting the diagnostic 

potential of this non-invasive analytical approach. Using the acquired serum 

and urinary metabolic profiles we were able to distinguish between CRC 

patients and the healthy subjects, as well as between two disease phenotypes 

(FOBT-positive and FOBT-negative) and between colon cancer and rectal 

cancer. However, our attempt to stratify CRC patients based on clinical 

classifications (stage Ito IV) was not successful. We believe that the inability to 

classify patients by their serum or urinary metabolite profile in this 

population was due to insufficient numbers of CRC patients, particularly at 

Stage I and Stage IV.  

The comprehensive metabolic analysis was able to identify important 

metabolites and metabolic pathways significantly altered by CRC 

development. Oleamide (or cis-9, 10-octadecenoamide) was the most 

down-regulated metabolite observed in all of the CRC patients. It is a fatty 

acid primary amide believed to mediate conjugated linoleic acid inhibition of 

Caco-2 colon cancer cell growth (16). Oleamide has also been reported to 

enhance the activity of certain types of serotonin receptors (eg, 5-HT1A, 5-HT2A, 

and 5-HT2C) (17, 18). In this study, disordered serotonin metabolism was 

reflected by increased expression of serotonin-related metabolites in the urine 

samples—the urinary levels of the intermediate precursor (5-HTP) and a 

metabolite of serotonin (5-HIAA) were both significantly elevated in CRC 
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patients compared to the healthy controls.  

Pyruvate was the most significantly increased serum metabolite in CRC 

patients compared to healthy controls. As the first product of glycolysis, the 

abnormal accumulation of pyruvate in the serum is an indication of 

accelerated glycolysis in CRC patients. Recent proteomic analysis of colonic 

tissues from CRC patients also identified increased glycolysis as an important 

metabolic variation associated with CRC morbidity (5). The increased 

pyruvate converts to lactate in the tumor tissues, in the presence or absence of 

oxygen (19), as evidenced by the significantly elevated level of lactate 

observed CRC samples in this study. Therefore, we surmise that the abnormal 

accumulation of pyruvate and lactate in the CRC patients may be a result of a 

higher energy demand in the solid colorectal tumor tissues. 

Significant changes in the levels of many phenyl-containing compounds 

were detected in the urine samples of diseased individuals compared to their 

healthy counterparts. These phenylic metabolites are produced mainly by gut 

microbiota through fermentation of dietary polyphenols and aromatic amino 

acids (eg, phenylalanine and tyrosine derived from dietary proteins) (20).  In 

the present study, the significantly altered levels of p-cresol, phenylacetate, 

and p-hydroxyphenylacetate were detected in the urine of CRC patients, 

along with altered levels of phenylacetylglutamine, methyl-o- 

hydroxyhippurate, and 2-hydroxyhippurate. The significantly altered 

metabolic signatures reflected by those phenylic compounds strongly indicate 

a disrupted gut microbial metabolism associated with CRC.   

We detected differently expressed metabolites in CRC patients with 

multivariate and univariate statistical significance, however, we were not able 

to use these acquired serum and urinary metabolic profiles for correct 

classification of CRC by TNM Classification (stages I to IV). We anticipated 

that our ability to classify patients by their serum and urinary metabolite 

profiles would be lower in this patient population due to insufficient numbers 
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of CRC patients, particularly at Stage I and Stage IV. However, using an 

OSC/PLS-DA discrimination technique, the serum and urinary metabolic 

profiles of FOBT-positive and FOBT-negative patients could be differentiated, 

as could metabolic profiles of colon cancer and rectal cancer among CRC 

patients (Fig. 5).  

These distinctions have collectively constituted a metabolic window into 

the CRC morbidity, providing metabolic endpoints that complement the 

interpretation of genomic, proteomic, and epidemiological data. The results 

of this study indicate that this metabolic profiling approach is sufficiently 

robust and sensitive to develop further for early detection of CRC and for 

patient stratification into subgroups of different pathological stages or clinical 

phenotypes, which will increase survival among patients with such a deadly 

disease. 

Materials and methods 

Clinical samples.  The protocol was approved by the Shanghai Cancer 

Hospital Institutional Review Board and all participants gave informed 

consent before they were involved in the study. The patients, age 42 to 74 

years old and diagnosed with CRC (32 colon cancers and 32 rectal cancers), 

were categorized according to histopathological features and stages according 

to TNM classification of malignant tumors: stage I, 9 patients; stage II, 27 

patients; stage III, 20 patients; stage IV, 8 patients. The clinical diagnosis and 

pathological reports of all the patients were obtained from hospitals. The 

healthy volunteers, aged 42 to 71 years old, were selected by a routine 

physical examination and patients with any gastrointestinal tract disorders 

were excluded. Body mass index (BMI) and carcinoembryonic antigen (CEA) 

level for each patient were also assessed. Clinical information of participants 

is provided in the Table 2. Urine and venous blood were collected in the 

morning before breakfast from a total of 64 CRC patients and 65 healthy 
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volunteers at Shanghai Cancer Hospital, Medical Center of Fudan University 

(Shanghai, China). Urine samples were immediately frozen on dry ice, and 

sera were separated by centrifugation at 2500rpm for 15 min. Until use in the 

assay, all samples were stored at -80°C 

GC-TOFMS spectral acquisition of serum samples and data pretreatment. 

Metabolites in the serum were derivatized with trimethylsilyl and 

subsequently analyzed by gas chromatography-time of flight mass 

spectrometry (GC-TOFMS) with minor modifications to our previously 

published method (13). A 100-μl aliquot of serum sample was spiked with 

two internal standard solutions (10μl L-2-chlorophenylalanine in water, 0.3 

mg/ml; 10μl heptadecanoic acid in methanol, 1 mg/ml) and vortexed for 10 

seconds. The mixed solution was extracted with 300 μl of 

methanol:chloroform (3:1) and vortexed for 30 seconds. After storing for 10 

minutes at -20°C, the samples were centrifuged at 10,000 rpm for 10 minutes. 

An aliquot of the 300-μl supernatant was transferred to a glass sampling vial 

to vacuum dry at room temperature. The residue was derivatized using a 

two-step procedure. First, 80 μl methoxyamine (15 mg/ml in pyridine,) to the 

vial at 30°C for 90 minutes followed by 80 μl BSTFA (1%TMCS) at 70°C for 60 

minutes.  

Each 1-μl aliquot of the derivatized solution was injected in spitless mode 

into an Agilent 6890N gas chromatograph coupled with a Pegasus HT 

time-of-flight mass spectrometer (Leco Corporation, St Joseph, USA). 

Separation was achieved on a DB-5 ms capillary column (30 m × 250 μm I.D., 

0.25-μm film thickness; (5%-phenyl)-methylpolysiloxane bonded and 

crosslinked; Agilent J&W Scientific, Folsom, CA, USA) with helium as the 

carrier gas at a constant flow rate of 1.0 ml min. The temperature of injection, 

interface, and ion source was set to 270°C, 260°C, and 200°C, respectively. The 

GC temperature programming was set to 2 min isothermal heating at 80°C, 
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followed by 10°C/min oven temperature ramps to 180 °C, 5 °C/min to 240°C, 

and 25°C/min to 290 °C, and a final 9 min maintenance at 290°C. Electron 

impact ionization (70 eV) at full scan mode (m/z 30-600) was used, with an 

acquisition rate of 20 spectrum/second in the TOFMS setting. Chromatogram 

acquisition, data handing, automated peak deconvolution, unique mass area 

calculation, and library search were done by Leco ChromaTOF software 

(v3.30).  

The data were mean-centered and pareto-scaled before multivariate statistical 

analysis in the SIMCA-P 11.0 Software package (Umetrics, Umeå, Sweden). 

Mean centering was performed columnwise to remove the offsets. Pareto 

scaling reduces the range of variance across each spectrum by dividing each 

variable by the square root of its standard deviation. Pareto-scaling is used in 

metabolic profiling studies as a compromise between no scaling, which may 

fail to detect small changes in concentration of metabolites, and unit variance 

scaling, which gives equal weight to baseline imperfections, noise, and 

defined signals in the mass spectrum (21). 

GC-MS spectral acquisition of urine samples and data pretreatment.  

Urine samples from human were used for GC-MS analysis and spectral 

acquisition according to our previously developed method with minor 

modifications (15). Briefly, a 600-μl aliquot of urine sample was prepared for 

ethyl chloroformate (ECF) derivatization. After adding 400 μl anhydrous 

ethanol, 100 μl pyridine, and 50 μl ECF to the urine sample, the resultant 

mixture was sonicated at 40 kHz for 60 seconds. The extraction was carried 

out using 300 μl chloroform and adjusting the aqueous layer pH to 9–10 using 

100 μl NaOH (7 M). The derivatization was repeated by adding 50μl ECF into 

the aforementioned products. After the samples were vortexed for 30 seconds 

and centrifuged at 3000 rpm for 10 minutes, the aqueous layer was aspirated 

off, and the remaining chloroform layer containing derivatives was dried with 
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anhydrous sodium sulfate for subsequent GC-MS analysis.  

GC-MS raw data files were initially converted into NetCDF format using 

DataBridge (Perkin-Elmer Inc., USA), then directly processed by our custom 

scripts in MATLAB 7.0 (The MathWorks, Inc. USA), to carry out baseline 

correction, peak deconvolution and alignment, exclusion of the internal 

standard peak, and normalization to the total sum of the chromatogram. (22). 

The resultant three-dimensional matrix encompassing peak indices (retention 

time-m/z pairs), sample names (observations), and normalized peak areas 

(variables) were imported into the SIMCA-P 11.0 Software package (Umetrics, 

Umeå, Sweden). The data were also mean-centered and pareto-scaled prior to 

multivariate statistical analysis. 

Statistical analysis.  The spectral processing and multivariate statistics for 

metabolic profiling were performed with Matlab and SIMCA-P software as 

previously reported (23). The detailed process is described in Supporting 

Information. PCA, a widely-ascribed unsupervised method, was used in this 

study to reduce complex spectral data sets to a two- or three-dimensional 

scores map that indicates inherent relationship such as clusters and groupings 

among observations. The first principal component (PC1) explains the most 

variance in the data. The second principal component, (PC2), is orthogonal to 

PC1, and represents maximum amount of variance not explained by PC1. The 

remaining components are constructed in a similar manner (24). In this study, 

PCA was used to analyze the MS data derived from samples prior to the use 

of supervised methods. 

 OPLS-DA (21, 25), a more sophisticated supervised classifier, decomposes 

the X matrix into blocks of structured variation correlated to and orthogonal 

(unrelated) to Y. Therefore, the discriminating information is concentrated in 

the first predictive component by removing systematic variation in the 

quantified serum or urine profiles in X related to the response Y. R2X and R2Y 

Formatted: German (Germany)
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represent the fraction of the variance while Q2Y suggests the predictive 

accuracy of the model. The cumulative values of R2X, R2Y, and Q2Y close to 1 

indicate a satisfactory model with a reliable predictive ability. 

The technique of orthogonal signal correction OSC(26) was used to remove 

between-sample variation in the data matrix that is not correlated with 

Y-vector. The resulting dataset was filtered to eliminate unwanted 

information and describe maximum separation based on class.  

Metabolites identified in serum and urine samples were classified by 

discriminant analysis to identify the primary metabolites accounting for the 

difference between CRC and control samples, using SPSS for Windows 

software (14.0, Chicago, IL). The three most important metabolites were 

plotted in a 3D scatter plot using Matlab software. An OPLS-DA predication 

model was generated in SIMCA-p, using the most outstanding metabolites 

selected from SPSS software. The most important metabolites were 

quantitated using reference standards. The peak area ratio of key metabolites 

to internal standard was used to calculate metabolite concentrations. 

Identification of metabolites differentially produced in CRC.  Based on a 

VIP threshold from a typical 7-fold cross-validated OPLS-DA model, a 

number of metabolites responsible for the difference in the metabolic profiles 

of diseased individuals and healthy controls could be obtained. In this study, 

the default 7-round cross-validation in SIMCA-P software package was 

applied with 1/7th of the samples being excluded from the mathematical 

model in each round, in order to guard against over-fitting. In parallel, the 

metabolites identified by the OPLS-DA model were validated at a univariate 

level using nonparametric Wilcoxon-Mann-Whitney test from the Matlab 

statistical toolbox with the critical p-value set to 0.05. The corresponding fold 

change shows how these selected differential metabolites varied in the CRC 

patients from those of healthy controls. Additionally, compound were 
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identified by comparing the mass fragments with those present in the 

commercially available mass spectral databases (eg, NIST, Wiley, NBS, in 

ChromaTOF or Turbomass (v 4.1.1) software) and finally verified by reference 

compounds available. 
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Figure legends 

 

Fig. 1.  Typical total ion current (TIC) chromatograms of biological samples 

obtained from a CRC patient and a healthy control. (A) Human serum TICs. 

(B) Human urine TICs. The TIC chromatogram for the control groups are 

shown below with the CRC samples. The keys can be found in Table 1.  
 

Fig. 2.  Metabolic profiles of samples from CRC patients and their healthy 

counterparts, derived from OPLS-DA models. (A) Human serum samples. (B) 

Human urine samples.  

 

Fig. 3.  Scatter plots of (A) human serum samples from CRC patients and 

healthy subjects constructed using three most significantly altered serum 

metabolites—oleamide, pyruvate, and histidine—identified by the SPSS 

discriminant analysis; (B) human urine samples from CRC patients and 

healthy subjects constructed using three most significantly altered urinary 

metabolites—glutamate, succinate, and 5-HTP. 

 

Fig. 4.  Three most altered metabolites in CRC patients: oleamide, pyruvate, 

and histidine. (A) PLS-DA prediction model constructed using oleamide, 

pyruvate, and histidine from serum samples of 45 CRC patients (red circles) 

and 45 control individuals (black dots), as the ‘training set’. This model was 

used to predict the samples that were not used in the construction of the 

model (the ‘test set’, 39 individuals (blue triangles)). Predictions are made 

using T-predicted scatter plot with the cut-off of 0 for class membership. The 

dashed line separates the CRC group from the control group (sample 

number). The OPLS-DA model predicted the presence of CRC with a 

sensitivity of 97.78% and a specificity of 97.83% in the test set, based on a 99% 

confidence interval for probability of class membership. 

(B–D) Differences in serum concentration of oleamide, pyruvate, and 

histidine between CRC group and control group, showing the mean 

concentration of the metabolite in each group with standard deviation.  

 

Fig. 5.  OSC/PLS-DA discrimination between phenotypes and cancer 

location in CRC patients. (A) Serum samples to discriminate between 

FOBT-positive and FOBT-negative CRC. (B) Urine samples to discriminate 
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between FOBT-positive and FOBT-negative CRC. (C) Serum samples to 

discriminate between colon cancer and rectal cancer. (D) Urine samples to 

discriminate between colon and rectal cancers. (A: R2Y=0.468, Q2=0.264; B: 

R2Y=0.618, Q2=0.337; C: R2Y=0.375, Q2=0.271; and D: R2Y=0.774, Q2=0.587) 
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